WHAT DOES THIS MEAN FOR HEALTH PROFESSIONALS?

As the incidence of diet-related diseases increased, major scientific reports and expert opinion were published throughout the 1980s and 1990s. One of these was the publication of the Dietary Guidelines for Americans, which recommended that the population reduce its intake of dietary fat to 30% of total energy intake. This was followed by the 1995 report of the Committee on Medical Aspects of Food Policy, which recommended that the population reduce its intake of dietary fat to 20-25% of total energy intake. These guidelines were later revised to recommend that the population reduce its intake of dietary fat to 15-20% of total energy intake.

However, it is important to note that these guidelines were based on the assumption that all forms of dietary fat are harmful. This assumption has been challenged by a growing body of scientific evidence that suggests that some forms of dietary fat may be beneficial for health, while others may be harmful.

In particular, the evidence suggests that unsaturated fats, such as those found in fish and nuts, may be beneficial for health, while saturated fats, such as those found in red meat, may be harmful. This is because saturated fats are more likely to be converted into body fat, while unsaturated fats are more likely to be used for energy.

In conclusion, the evidence suggests that the guidelines for dietary fat intake should be based on a more nuanced understanding of the role of dietary fat in health. This is because different forms of dietary fat have different effects on health, and some forms of dietary fat may be beneficial for health, while others may be harmful.

INTRODUCTION

The 2008/09 New Zealand Adult Nutrition Survey showed that New Zealanders are obtaining about 33% of their energy from fat, which falls within the recommended acceptable range of 30-35% (1, 2). This percentage energy from fat has reduced over the years, from over 40% in 1977 and 35% in 1997 (3, 4).

In the latest survey, beef and lamb contributed only 6.8% of total fat intake, and 7.3% of saturated fat intake, both having reduced slightly from the previous national survey. Sausages and processed meats added 4% and 4.4% to total and saturated fat intakes respectively. It is hard to determine the contribution of meal types, because the fat content of all pies and pasties are calculated as one category. However, the total contribution of these products was only 3.5% and 4% respectively for total and saturated fat. New Zealanders are eating leaner beef and lamb than ever before. A study published in the New Zealand Medical Journal shows beef and lamb contain 30% less fat and 65% less saturated fat than 10-15 years ago (5).
SATURATED FAT

Saturated fat gave all fat a bad name back in the 1980s, as all saturated fat is associated with increasing blood cholesterol, which in turn increases the formation of plaque in the arteries and can lead to heart attacks. Only about half the fat in beef and lamb is saturated, and within that saturated fat, about a third is stearic acid. Lean beef and lamb only contribute 7.3% of the saturated fat in their production. It is not surprising, therefore, that lean beef and lamb only contribute 7.3% of the saturated fat in the New Zealand diet.

POLYUNSATURATED FAT

Polyunsaturated fat is made up of two main families: n-3 fatty acids (also known as omega-3 and omega-3.1), and n-6 fatty acids (also known as omega-6 and omega-3.2). One of the n-3 fatty acids, eicosapentaenoic acid (EPA), found in oily fish and fish oil supplements, is known to help people with heart problems by reducing blood clotting and lowering plasma triglyceride levels. EPA and its ‘brother’, docosahexaenoic acid (DHA), have also been used in the treatment of depression, as these polyunsaturated fats are important for normal brain function. The small amount of polyunsaturated fat in beef and lamb also contains these n-3 fatty acids, potentially making a significant contribution to the diets of those who eat little fish.

Importantly for New Zealand, beef and lamb from grass-fed animals contain higher levels of these n-3 fatty acids than meat from grain-fed animals. In one UK study, the beef from grass-fed animals contained two to four times the levels of n-3 fatty acids found in cattle given concentrate. Similar results were found for lamb.

The ratio of n-6 to n-3 fatty acids has been under some scrutiny, with concern voiced about the imbalance of these two fatty acids in the Western diet today. Our eating patterns can show a ratio of up to 20:1, a far cry from the recommended ratio of 4:1 or lower(8). Research here in New Zealand has shown our grass-fed beef to have a ratio of below 2, which is not only well within the recommended level, but also below that found in meat from grain-fed cattle.

The other polyunsaturated fat attracting some attention is conjugated linoleic acid – CLA for short. Studies on rats have shown a reduction in the incidence of cancer and reduced tumour size when CLA is used as a treatment(10). CLA is only found in products from ruminant animals – meat and milk, and again, in higher levels when those animals have been raised on pasture. The question at the moment is whether or not meat and milk can contain enough CLA to be effective. So far, the beneficial effects are only seen when it has been given as a supplement. Research here in New Zealand has shown that beef and lamb could provide up to 15% of the required daily amount(11).

TRANS FAT

The final type of fat found in red meat is trans fatty acids. These, like saturated fat, are known to decrease HDL cholesterol and increase LDL cholesterol.Whilst meat from ruminant animals does contain these fatty acids naturally, there is more concern over processed foods, eg commercially-produced cakes, biscuits and pastries, where the trans fats have been produced as a result of hardening vegetable oils. The naturally occurring trans fat does not have the same detrimental effect on cholesterol, and is converted into conjugated linoleic acid (CLA) during human digestion(12,13). The World Health Organisation recommends trans fat contributes no more than 1% total dietary energy. Current intakes in New Zealand are around 0.5-0.6%(14,15).

What is the role of the red meat industry?

So what has the red meat industry done in response to public health messages encouraging a lower fat intake?

Opportunities to reduce the fat content of beef and lamb have been taken throughout the production chain. From pasture to plate, beef and lamb contain 30% less fat than 10-15 years ago and supply 65% less saturated fat than previously measured. In addition, about 30% of the total fat is discarded before sale.

Statistics for beef cattle do not show a clear shift to leaner animals, but because a large amount of beef is sold in a boneless form as cuts such as steaks or mince, fat is trimmed before being sold.

Butchers then trim off more of the fat in-store, ensuring standards are met irrespective of the original fat level of the meat supplied. The introduction of the Beef and Lamb Quality Mark in 1997 was the industry’s response to providing consistent quality beef and lamb. The Quality Mark requires retailers to have written trim specifications to a maximum of 5mm fat, along with the removal of internal fat deposits where practical. These cuts can be trimmed further, some being sold with almost no external visible fat.

A significant amount of lean beef and lamb, which contains less than 4% saturated fat, qualifies for the Heart Foundation Tick. The Heart Foundation recommends 100-185g of lean meat can be eaten on most days(16).

MEAT PRODUCTS ARE ALSO CHANGING

Meat products include sausages, burgers, pies and processed meats. They are traditionally viewed as the fattier forms of meat, but often contain hidden non-meat vegetable fat – for example the pastry in a pie – which increases the total fat content and gives an exaggerated view of the fat derived from meat.

These products are also changing, with several brands of sausages now proudly boasting the Heart Foundation Tick. The Food Standards Code, introduced at the end of 2002(17), requires sausages to contain at least 50% fat-free meat flesh, and the fat content to be no more than half the meat percentage. For example, if a sausage contains 50g of fat-free meat, it cannot contain more than 25g fat in addition to the meat.

The code also requires the percentage of a ‘characterising’ ingredient to be declared on the label of certain meat products, eg pies. In other words, the packaging around a steak and kidney pie has to state how much steak and kidney is contained in the pie. The percentage of meat has to be at least 25%, based on the total weight of the pie, including the pastry. Processed meat products must contain no less than 30% meat.

So what happens to the discarded fat?

Popular belief is fat trimmed from meat cuts goes back into the food chain in another form, for example in sausages or pies. In reality this happens in far smaller quantities than previously thought. Discarded fat from meat processors can be purified and used, but it is an expensive process. Whilst some becomes margarine, or is used in frying oils and baked goods, most is exported.

Fat trimmed by butchers is not allowed to be used for edible products once it has left its premises, and again, must be exported for use in the soap and cosmetics industry overseas. Butchers can use the fat trimmed themselves, but as the major supermarkets, who sell at least 85% of beef and lamb, have centralised production of small goods, all fat trimmed from meat cuts is sold for disposal.

Even independent butchers, who may use trim more easily, are limited by the Food Standards Code. The industry estimates up to 90% of trimmed fat is graded inedible, and therefore ends up as soap or in cosmetic products overseas.

WHAT HAPPENS IN OUR HOMES?

The final opportunity for trimming fat occurs within the home. In the 2008/09 New Zealand Adult Nutrition Survey, 62% of those surveyed trimmed fat from red meat regularly or always(18).

Another New Zealand study was conducted by Lincoln University using 170 pairs of steaks from beef striploins(19). Participants were given steaks with two different levels of visible fat. Those with the fatter steaks trimmed more of the fat, but both steaks, as eaten, only provided on average 3.95% and 8.25% fat, depending on the original fat content.